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Figure 3 (above right). 4x6 SOM of daily 500 hPa geopotential height, 2m T, 10m V, 10m U, and 

850 hPa T fields from June-July-August over 1987-2012, centered on the Western United States. 

Note: only 500 hPa geopotential height fields (in meters) are shown in full SOM.  The data used for 

this analysis comes from ERA-Interim reanalysis. 

Figure 4 (right). (a) A weather 

regime identified by SOM. (b) 

Regression model for a specific 

weather regime.   

(a)  
(b)  

 

 

 

 

 

 

 

 

 

 

 

 
   

 

 

 

 

 

 

 

 

 

 
   

• Two separate but related ozone forecasting methods, REGiS and 

SiS, that are based on synoptic setting identification are developed 

using SOM clustering algorithm  

 

• Clustering based on synoptic setting reduces the modeled-ozone 

variance making the regression model more effective at predicting the 

ozone  

 

• REGiS and SiS are combined with quadratic stepwise regression 

(REG) to yield 3 distinct single-value ozone forecasts that contain 

some independent information with regard to the foreacst 

 

• Consensus forecast exploits this independent information to yield 

forecast skill greater than that of each individual approach 

 

• PDFs produced by REGiS and SiS allow for a quantification of ozone 

forecast uncertainty 

 

• In our future work we will develop a similar model for PM2.5 

• The use of statistical methods to help predict air quality 

has been shown to be an effective tool for air quality 

(AQ) forecasters (Garner and Thompson, 2013; EPA 

2013; Zhang et al., 2012) 

 

• Statistical methods allow AQ forecasters to identify the 

magnitude of uncertainty associated with a forecast 

enabling them to make a better AQ prediction (Garner 

and Thompson, 2013) 

• The model uses 3 different but related methods to make 3 distinct single-value 8-h 

ozone maximum forecasts 

 

• These 3 forecasts can be averaged to create one consensus forecast 

 

• Two of the methods are able to generate probability density functions (PDFs) of the 

forecast, providing information on forecast uncertainty 

 

Method 1:  Regression (REG) 

 
• Quadratic Stepwise Regression: 

 

• Predictors (𝑥) are temperature, wind speed, wind direction and previous day ozone 

 

Method 2:  Regression in SOM (REGiS) 
 

• Synoptic setting modulates ozone response to local weather and chemical variables 

 

• Therefore categorizing the synoptic setting decreases modeled-ozone variance and 

allows for more accurate statistical models based on local predictors  

 

• SOM, which is a powerful clustering technique, is used to identify a representative 

number of synoptic settings (distinct weather regimes) for an AQ forecast region  

(Figure 3) 

 

• Once the weather regimes are established, REGiS generates a regression equation 

(similar to the one in method 1) for each synoptic setting (Figures 4a and 4b) 

Method 3:   SOM in SOM (SiS) 

• Use SOM to identify distinct weather regimes for a region of an AQ forecast (as 

shown in Figure 3) 

 

• For each weather regime, cluster predictors into distinct groups.   Basically use 

SOM again but now on predictors (predictors as in method 1) within each regime 

Figure 2 (above). Map of  the San Joaquin Valley 

showing major regional cities along with the air quality 

and weather stations that are used in this work.   

• Statistical models work by quantifying relationships 

between predictors such as meteorological variables 

and 8-h ozone maximum values (EPA, 2003)   

 

• We develop our model using an ozone dataset from a 

representative monitoring site in the San Joaquin Valley 

 

• To train our model we use 1987-2012 June-July-August 

(JJA) detrended ozone data (to compensate for 

significant NOx emission changes over this period) 

measured at the Parlier AQ station 

 

• Local meteorological variables are from the Fresno 

station which is a weather proxy for Parlier  

 

• Develop a novel stand-alone (without help of chemistry 

transport models) statistical approach to predict 8-h 

ozone maximum that specifies forecast uncertainty with 

the help of a clustering algorithm known as self-

organizing maps (SOMs) 
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Daily 500 hPa geopotential 

height, 2m T, 10m V, 10m U, 

and 850 hPa T fields from 

1987-2012 

SOM 

• Evaluate the approach using 2013 June-July-August 

(JJA) ozone data from a station in the San Joaquin 

Valley, CA – a US region that sees the most ozone 

exceedances     

Figure 1 (right).  An 

example of a product 

that quantifies 

uncertainty in an 8-hour 

ozone maximum 

forecast. 

Predict weather 

regime by a 

numerical weather 

model 

Match the 

predicted regime 

with categorized 

regimes   

Weight forecasts 

based on similarity 

between predicted and 

categorized regimes 

Figure  5 (above). REGiS prediction procedure schematic. 

Generate a 

PDF of the 

forecast 

• Both REGiS and SiS are able to produce PDFs of an 8-hour 

maximum ozone forecast (Figures 6 and 7) 

 

• The PDFs can be supplemented with single-value forecasts from 

REG, REGiS, SiS, and their consensus (Figure 7)  

Figure 6 (right). PDF of 8-h 

ozone maximum forecast 

generated by REGiS at 

Parlier for June 4st, 2013.  

Dashed lines indicate 25-75 

percentile (orange) and 5-95 

(blue) percentile regions.  

REGiS single-value forecast 

is in blue and observation is 

in red. 

Figure 7 (left). SiS PDF and 

consensus forecast vs. 

observations at Parlier for 

JJA 2013.  
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REG 8.16 

REGiS 7.91 

SiS 9.10 

Consensus 7.68 

Table 1.  RMSE for 

each method. 
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